Tech Support & Bug Report Guidelines

Version 1.3, 2018-06-15
Thomas Pronk, pronkthomas@gmail.com

Introduction

This manual contains technical support and bug report guidelines for studies that are conducted
online. The remainder of the manual consists of two sections:

o If a Participant Reports a Problem. This section covers the kind of bug reporting we can
hope to expect from participants. It also has a sub-section on basic tech support.

e |If You Discover a Problem. This section offers more advanced bug reporting that makes use
of browser development features. If you discover a problem and manage to reproduce it,
but the developer does not, then you might want to deliver this information to help her out.

If a Participant Reports a Problem

What to do when a participant reports that the software for administering your study
malfunctioned? In many cases, a malfunctioning experiment may simply due to a faulty Internet
connection or client computer; see “Quick Fixes” for solutions to common problems. In some cases,
the malfunction may be due to a programming error, a so-called ‘bug’. Bugs in running experiments
are more challenging to find and solve for two reasons:

1. They occur in unknown circumstances, making them more difficult to pinpoint
2. We may initially need to rely on bug reports provided by non-expert participants.

Good reporting can be very valuable in helping to fix such post-deployment bugs, but what makes a
good bug report? This document aims to provide some guidelines; when a bug is suspected,
concrete and detailed information is valuable to your technician for finding out what is wrong.

Be concrete

A useful bug report describes the actions and experiences of the participant in very concrete terms.
For instance “I clicked the ‘Submit’ button with the mouse” is better than “I submitted the form”. “I
saw a red text that said ‘Page error #219’” is better than “the page reported an error”.

Provide a lot of details
Some specifics that can be most valuable:

e At what time did it happen? How long was the participant taking part before the bug
occurred?

e What software did the participant use? Operating system & Browser, what version
numbers?

e Was there anything unusual before it went wrong?

e What exactly did the participant do just before it went wrong?

e What did the participant see just before and after when it went wrong?

e Any e-mails, screenshots, etc. received from the software

mailto:pronkthomas@gmail.com

Quick Fixes
In most cases, a malfunctioning experiment may be solved by applying a simple workaround:

1. Try again sometime later
2. Try a different web-browser (if using Chrome, try Firefox, and vice versa)
3. Try a different computer

If You Discover a Problem

This section is about producing the types of logs your technician would inspect to debug the website.
These logs are quite detailed, so they can get big quite quickly. Hence, this section is split in sub-
sections on what to do before and after triggering the problem. It’s important to take these steps
just before and after the problem, so that the logs don’t contain unnecessary information.

NB - All the examples are based on the browser Chrome. If you can only reproduce the problem in a
different browser, then please get in touch with your technician for additional instructions.

Before Triggering the Problem

We will obtain the logs via the developer tools, which can be opened by pressing Ctrl + Shift + | or
F12. It can also be opened by navigating to the menu option shown in Figure 1. Note that the
developer tools need to be open before you trigger the problem in order to work. In the developer
tools, you'll see a list of tabs at the top, named “Elements Console Source etc.”, which each opens a
differently looking screen. We're mainly interested in the Console and Network screens.

a
A,
P
G Mew tab Ctrl+T

MNew window Ctrl+ 1

MNew incognito window Ctrl+Shift=

History r

Downloads Ctrl+]

Boockmarks r

Zoom - 110% -+

Print... Ctrl+P

Cast...

Find... Ctrl+F
Save page as... Ctrl+5 More toals k
Create shortcut...

Edit Cut Copy Paste
Clear browsing data... Ctrl+Shift=De)

Settings
Extensions

Help »
Task manager Shift+

Bt Ctrl+Shift+0)
Developer tools Ctrl+Shift=I

Figure 1. Opening developer tools via the menu

Preparing the Console Screen

The Console screen (Figure 2) reports Info, Warnings, and Errors, about the web-page that is being
displayed. Info is displayed in black, and consists of debug messages generated by the applications
running on the web-page. Warnings and Errors are displayed in red, and indicate possible problems
detected by the web-browser. In the Console screen, be sure that Preserve log is enabled. To
accomplish this, open the Console settings by clicking the blue cog, and ensure that there is a tick
mark at the option “Preserve log”. Next, clear the log (by clicking the “no parking” button) just before
triggering the problem.

DevTools - www.google.com/search?source=hp e~ 6XoWSKABOS LUZ23qBAPE~google - chrome + cx... =8 (=l e |
[|I Elements Console Sources MNetwork Performance Memory = [] :
10} @ top ¥ | Filter All levels ¥ # Group similar e

Hide network Log XMLHttpRequests
|’ reserve log # Show timestamps
Selected context only # Autocomplete from history

16:42:81.721 [Violation] Forced reflow while executing JavaScript tock 48ms
16:42:87.547 [Viclation] Added non-passive event listener to a screll-blocking
<some> event. Consider marking event handler as 'passive' to make the
page more responsive. See <URL>

@ 16:42:82.398 GET https://clientsS.google.com/pagead/drt/dn/dn.js @ () {index):4

@ 16:42:82.468 k Uncaught ReferenceError: ghar iz not defined (index):6
at onleoad ((index):6)
© 16:42:02.491 p GET https://adservice.google.com/ adservice.google.com/adsid/google/fuizl
adsid/google/ui @ ()

Figure 2. An example console screen. The “console settings”, “clear logs”, and “preserve logs” buttons, are marked with red
circles.

Preparing the Network Screen

The Network screen (Figure 3) reports the data that was sent back-and-forth between your
computer and internet. This data may be text or pictures, or packages of abstract data, which is
generally in the form of JSON. Similar to the Console, info is displayed in black and errors/warnings
in red. In the Console screen, be sure that Preserve log is enabled (which then is shown with a tick
mark), and that you’ve cleared the log (by clicking the “no parking” button) just before triggering the
problem.

[w ﬂ Elements Console Sources Metwork Performance Memory » a3 :

. M 7 Q | vView IE = 0O Groupbyframe reser\.fe log U Disable cache | U Offl

Filter) Hide data URLs

m XHR J5 CS5 Img Media Font Doc WS Manifest Other

50000 ms 100000 ms 150000 ms 200000 ms 250000 ms 300000 ms 350

Name Status | Type | Initiator Size | Time Waterfall F'y
| || search?source=hpé&... 200 do.. Jfws/ fjs/k=xjss.enz.. B829.. 575ms -

| fo46f042-0381-4d2.. 200 scri.. Inject.preload.js:373 (fro.. 18 ms

| googlelogo_color_1... 200 png /search?source=hp... (fro... 0 ms

\H photo,jpg 200 png /search?source=hp... (fro... 0 ms

Figure 3. An example network Screen. The “clear logs” and “preserve logs” buttons are marked with red circles.

After Triggering the Problem
After triggering the problem, directly go to the Developer tools in order to export the logs of the
Console and Network:

e Console. In the console screen, right-click anywhere and pick Save as from the context-
menu that appears

o Network. In the network screen, right-click on a log entry and pick Copy -> Copy all as HAR

from the context-menu that appears (Figure 4). Next, open a new text file via a plain text

editor such as Notepad (Kladblok), but don’t use Word please. Paste (Ctrl + V) the contents

and save the file.

R ——— mmmemeiim e mm i

200 script rs=ACT900Fy0gonadd:
Cpen in Sources panel png rs=ACT900Fy0gonadd:
Cpen in new tab png rs=ACT90cFy0gonaldd:

gif [s=ACT900Fy0gona9d:

Clear browser cache

ei=tHAIW-mg text/html

document

search?source=hp&ei=
rs=AAZYTTVFXOym B
rs=AAZYTTVFxOymah)
rs=AAZYTTVFxOymah)

Clear browser cookies

Copy 4 Copy link address

Copy response

Block request URL]
- (index)
Block request domain Copy as PowerShell

inject.preload.js:373

Save az HAR with content

gstt.5,unt.2,cst Save as.
{failed)
302
LpPgy-k4sU4XQ&y... 200
WWKEwjp047PsdPb... 200
1,358,13:3,c,524,188... 204
1987325376,h,1,40,... 204
D1%2Frs%3DAHpO... 200
200
200

Figure 4. Saving the network log

Copy as fetch

Copy as cURL (cmd)
Copy as cURL (bash)
Copy all as PowerShell
Copy all as fetch

Copy all as cURL (cmd)
Copy all as cURL (bash)
Copy all as HAR

document
script

script

rs=ACT900Fy0gonadd:
rs=ACT900Fy0gonadd:
rs=ACTI00GsvMPX3Q

search?source=hp&ei=
t

Other
rs=ACT900GsvMPX30Q
rs=ACT900GsvMPX3Q
cb=gapi.loaded 0:157
inject.preload jz:373

/ /scs/social-static/ fis

Version History

e v1.0 & v1.1. Initial version and an update before | tracked version history ©

e v1.2. Added “If You Discover a Problem”, which covers Console and Network logs. Rewrote
introduction.

e v1.3. Fixed language errors and added explanation on Console settings

