
Lecture 2: Python Programming Paradigms 
for R Novices

Programming in Psychological Science: Python

Thomas Pronk



Programming Paradigms

• Imperative (Structured) programming

– If, loop, sub-routines

• Functional programming

– Expressions, first-class functions

• Array programming

– c(3, 4) + 1 -> c(4, 5)

Did you know… All these paradigms can be expressed as Turing Machines



Materials

• This presentation

• Three assignments to hand in

• Truckloads of support materials on the web

This is a nice basic tutorial: 
http://www.djmannion.net/psych_programming

http://www.djmannion.net/psych_programming


Imperative Programming

Using Statements to Change a Program State



Imperative Concepts

1. Importing packages

2. Variables (state)

3. Flow control (if, loop, function calls)

4. Blocks

This is what most people see as “programming”

Did you know… There was a time programming was done by punching holes in cards



Imperative Programming in R

library(ggplot2)          # Import package

x <- 1              # State

while (x <= 4) {   # Loop

if (x > 2) { # If

print(mean(x))    # Function call

}                     # End of if-block

x <- x + 1 # Update state

}                         # End of loop-block



Imperative Programming in Python

import numpy as np # Import package

x = 1                # State

while x <= 4:             # Loop

if x > 2:             # If

print(np.mean(x)) # Function call

x = x + 1        # Update state

# A block is defined by indenting 4 spaces



Basic Data Types in R and Python

R Python Properties

numeric int An Integer Number (-5, 0, 3)

numeric float A Natural Number (3.2, 0., 8.17), a.k.a. 
“floating-point number”

character str String of text (“hey”, “”, “a”)

logical bool Boolean (True or False)

object In Python, everything is an object in the end



Functional Programming

Treat Computation as the Evaluation of 
Mathematical Functions



Functional Concepts

• Expressions (many languages)

• First-class functions (modern languages: R, Python, JavaScript)

You can do a lot with functional programming; look for lambda calculus and closures



Expressions in R and Python

Type R Python

int & 
float

arithmetics (+ - * /) arithmetics (+ - * /)

bool boolean logic (&& ||) boolean logic (and or)

str doesn’t work some work (try +)

(all) comparison 
(== != > >= < <= )

comparison 
(== != > >= < <= )



First-class Functions in R

# Adds one to number

add_one = function (number) {

return (number + 1)

}

x = add_one # x refers to add_one

print(x(5))              # Gives 6

numbers = c(1, 2, 3)     # Vector of numbers

# Apply add_one to each element

print(sapply(numbers, add_one))



First-class Functions in Python

# Adds one to number

def add_one(x):

return x + 1

x = add_one # x refers to add_one

print(x(5))              # Gives 6

numbers = [1, 2, 3]      # List of numbers

# Apply add_one to each element

print(map(add_one, numbers))

# In Python 3, use: list(map(numbers, add_one)



Array Programming

Apply Operations on an Arrays of Values



Array Concepts

1. Single value is Scalar; list of values is Array

2. Apply operations on whole arrays at one

Mainly provided in languages for data analysis: 

• R

• Matlab

• Python with NumPy



Array Data Types in R and Python

R NumPy Properties

vector,
matrix, array

ndarray
(numpy)

Array with values of the same 
type; record array

data frame ndarray
(numpy)

Values whose type vary per 
column; structured array

list list, dict, tuple
(Python)

List of values of mixed types



Array Programming in R

numbers = c(1, 2, 3)     # Vector of numbers

# Get first element

print(numbers[1])

# Add one to each element

print(numbers + 1)

# Select last two elements

print(numbers[2:3])

# Single element via range; we get a scalar

print(numbers[2:2])



Array Programming in Python

import numpy as np # Need numpy

# ndarray of numbers

numbers = np.array([1, 2, 3]) 

# Get first element; note 0

print(numbers[0])

# Add one to each element

print(numbers + 1)

# Get last two elements; note 3

print(numbers[1:3])

# Single element via range; we get an array

print(numbers[1:2])



NumPy Caveats

• I’ve had trouble getting structured arrays to work with 
different data  types (one column is a string, another int)

• Work-around; use arrays of objects; they work everywhere


